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ABSTRACT

------

T) A frequently occuring problem is to find that probability distribu-
ConvX

tion (PD) lying within a

A

R
set” 6 which minimizes the I-divergence between

it and a given PD Ri) This is referred to as the I-projection of R
- t

onto &,

Csiszar (1975) has shown that when 6 = (1 &

1

i

is a finite

intersection of closed, linear sets, a cyclic, iterative procedure which

projects onto the individual 61 must converge to the desired I-

projection on & providing the sample space is finite.

15 docupment

‘H!r!—we-proposean iterative procedure which requires only that the

Set

/’&: be convex (and not necessarily linear) which under general conditions

t

will converge to the desired I-projection,of R onto I 6;.
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AN ITERATIVE PROCEDURE
FOR OBTAINING I-PROJECTIONS
ONTO THE INTERSECTION OF CONVEX SETS
1. Introduction

% Suppose P and Q are probability measures defined on subsets
f? of the finite set X, which WLOG we take to be the first m positive in-
il tegers. The I-divergence of P with respect to Q, also called the

- Kullback-Leibler information number, cross entropy between P and
. Q, information for discrimination, entropy of P relative to Q, etc.,

F is given by

N ]

;- (1.1) IE|Q) =T PG gn 2

Fi k=1 (k)

ﬁ; where p = (p(l),...,p(m)) and q = (q(1).,,,.q(m)) denote the

- probability mass functions (PMF) of P and Q respectively. (In
!! general, we shall indicate a measure on subsets of X by an upper

case letter (P,Q,R,S) and the associated Radon-Nikodym derivative

- with respect to counting measure (PMF) by the corresponding lower case

letter (p,q,r,s).)
We mention that I(P||Q) 4s defined analogously for general prob~-

ability measures on infinite spaces, but for simplicity, we will only

consider finite sets. (See Kullback (1959), or Csiszar (1975) for the fﬁ]
- general definition.) fFW
- It is well known that I(P|Q) 2 0, and that I(P[jQ) = 0 iff P=0.

Thus it is hueristically reasonable to think of I(P||Q) as representing o

}
- a "distance" between P and Q. However, I(+|]*) is not a metric, nor
b

- a— - —— M. - - a »a . cme A s a3l a.m_ s &, a_ a P ) - . - - A1
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is the symmetrized version jfﬁ
. o
P“g! + Q" ) )
47
used by Jeffreys (1948). fi&
el
Nevertheless, : r
m % Ij;f
(1.2) z |p) - )| = [2 1(P|)]* , S0k
k=1 i
as shown independently by Kullback (1967), Kemperman (1967), and Csiszar ;?j
(1967), so that we have some idea of what small values of I(P“Q) imply. ;f
L
If we interpret I(P"Q) as distance, it seems natural to define ;£i1

the I-projection of the probability distribution (PD) R onto a set

8 of probability distributions as being a PD Q € 8 such that

I1(QR) < = and

-

(1.3) I(QR) = min I(P|R). lit?ﬁ
. Pes -

In some sense, Q 1is the PD closest to R that lies within §. i::
Minimization problems of the form (1.3) play a key role in the ff%
information-theoretic approach to statistics (e.g. Kullback (1959), ;??
Good (1963), etc.) and also occur in other areas such as the theory of o
large deviations (Sanov (1957)) and maximation of entropy (Rao (1965) ?T?
and Jaynes (1957)). o
However, in statistical circles, I-projections are probably most :;j
important for being dual problems to certain log-linear model maximum iﬁ}
1ikelihood estimation (MLE) problems. In particular, it is known that ;E
the multinomial MLE problem ;;j




' 3
m
(1.4) Max I pa)®

p(k)=0,Vk k=1

m

i: p(k)=1 o

1n p €M N

s

(where 7 1is some subspace of Rm containing the constant vectors) has ._._]

precisely the same solution as the I-projection problem ioke :

(1.5) Min - I(P]U) e

P:S-PEM*

(where s(k) = n(k) (miz a(1))7Y, and U(Kk) -% is the uniform PMF). Note

that for a subspace spanned by the vectors ay5°c+,8,, we have
ot = ay, -8 }* =(fa,)*
1’ » t 1 i ’
and hence (1.4) is equivalent to
Inf  I(P|U) = Inf 1(efu).
Pcs-m*

o .t 4
Cf]? (S-{ai] )

Since the S-{ai}"' are linear spaces, Csiszar's algorithm of cyclic, iter-

ated I-projections is appropriate here. In this format, it is easy to

see the connection between Csiszar's procedure and the IPFP (iterative

| A SEPRERN

proportional fitting procedure) which has received so much attention in S

the general area of categorical data. Meyer (1980) has an extensive dis-

= ] cussion and several examples where he relates Csiszar's procedure and the

- general IPFP, ]
.t -
- Suppose now that m==l(l+---+l(,c is a closed, convex cone expressible as a di- '
E rest sum of closed, convex cones containing the constant vectors rather than a

- ~—
- R -1
- . 1
3

R
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direct sum of subspaces. Such a configuration would arise naturally if
one were considering order comstraints in a log-linear model. Then it is

well known that the dual (polar) cone of 7], defined as
m
"= {y;;y(i)x(i) £ 0 for all x €7}
is expressible as
- LN ) * = * * s e *
n* (R HK,+e o 4K ) K}ORZN -+ NKE.

In unpublished results, Dykstra has generalized the (1.4)-(1.5) duality
results to the case where 7 1is a closed, convex conme (with %7 replacing
Zf in (1.5)). This means that many MLE problems involving partial orders

in log-linear models are equivalent to I-projection problems of the form

Min 1(pjju).
®
pe{\ (s-k%)

If the Kz's are not subspaces, Csiszar's cyclic, iterated scheme need

not work. However, the procedure described in this paper will work since
the sets S-K; will be closed, convex sets of PD's.

Of course we would really like to be able to identify structure in .

these log-linear model situations, which leads to the area of inference ;;,l
for various competing models. While these are important questions, we Ei_;
shall only be concerned with the MLE problem in this paper. ;':

Csiszar (1975) discusses I-projections in great detail, and has

a "geometric" development for I-projections which is quite appealing.

(Cencov (1972) also has a geometric development of I-projections,

but with the arguments interchanged.) Csizar also discusses the exist-
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ence of I projections, and shows that if & 1is a convex set of PD's
which is variation closed, the unique existence of the I-projection
of R onto § 1is guaranteéd provided there exists a P € § such that
I(P|R) < ». This result is clearly applicable for closed, convex sets
of PD's on the finite set X. We shall make repeated use of the
elegant characterization of I-projections given in the following

theorem.

Theorem 1.1 (Csiszar). A PD Q € 8 (such that I(Q|R) < ®) is the I-

projection of R onto the convex set 8 of PD's iff

(1.4) 1(P|R) = 1(Pll) + 1(QlR) WP € 6.

CElA B S
PR (A N

Note that in our setting of finite X, it follows from (1.1) that (1.4)

is equivalent to

(1.5) k)?ll (p(k) - q(k)) m(%%) 20 VWres.
If in fact Q 1s an algebraic inner point of &, i.e. for every
P € 8(P#Q), there exists 0 <a< 1 and P' € § such that
Q=aP + (1a)P', equality must hold in (1.4) and (1.5).
This situation is roughly akin to projecting onto subspaces in
least squares theory. In particular, Csiszar defines an § to be
a linear set of PD's if P, P' € 8 implies aP + (1-a)P' € § for
every o for which it is8 a PD. If 4 1s a linear set, then the
inequality sign in (1.4) and (1.5) may be replaced by an equality sign

as long as X 18 finite. Based upon this characerization, Csiszar

.............
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is able to prove that if X 1is finite, & = (5 81 is a finite
intersection of arbitrary linear sets, and there exists a P € § such
that I(P|R) < =, then successive , cyclic, iterated I-projectionms
onto the individual sets must converge to the I-projection of R onto
$. Thus if Qo = R, and Qn denotes the I-projection of Qn-l

onto 6n (where dh = 61 if n=2t +4i, 1 <1 <t), then Qn

must converge to Q€ 4 as niw where I(Q||R) = min I(P|R).
P€ES

This result is very much dependent upon the assumption that the

8, be linear sets (in fact it is not true in general) and the accompany-

i
ing fact that equality holds in (1.4).

2. The Procedure

We now propose a procedure which will enable one to obtain I-
projections onto a finite intersection of arbitrary closed, convex
sets of PD's by iteratively finding I-projections onto the individual
sets. We will prove that that under a mild restriction, the procedure
must give the correct solution, and then examine an example.

First let us note that we can still define I-projections for

non-negative vectors which are not normed to be PMF's onto sets of

. DR TR . B .. - . . . . L - . .
Al a G PR N e PYBAY S S N ) Bl S B,

P

P
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P P Y




T N N A A N T T AT NTIAT A TR TR TR

LR R A A et s SR AR S e G S L R A S |
)

‘:Z'-J

7 g;ﬁ

b, 4

b

PD's. That is, for r > 0 (r#0), QG 6 is an I-projection of %:a

r onto a set of PD's & iff Rt
b

o (k) m ) S

T ak) tn T = 1(Q)R) = min I(P||R) = min T p(k) tn 22X T

I r(k) PES P€s 1 £ (k) =

and I(Q|R) < =. kg

Of course, since & contains only PD's, the I-projection of

r onto a convex set § 1s identical to the I-projection of

m
r' = r/ ¥ r(k) (r normalized to be a PMF) onto &. It is easily
1

shown that the characterization of I-projections given in (1.4) and

(1.5) is still valid, even though I(P||R) > 0 need no longer be o
true. (We note that multiplication and division of vectors will refer

to the operations being performed coordinatewise.)

Let us now state our algorithm. We assume we wish to find the
t
I-projection of r onto & = [ 61, wvhere 81 are closed, convex
1
sets of PD's., We assume that we can project onto each 61 individ-

ually and shall denote the I-projection of S onto 61 by GKQJS).

We also assume there exits a PD T € § such that I(T"R)< R

1. Let Sl’1 = R, and let 1,1 = P(sllbl’l). We then set o2
P
8 =p =r 1,1 . (We note that if s (k) = 0, then Tfj
1,2 1,1 81 1 1,1 e
’ T
so is P 1(k). We take 0/0 to be 1.) 'f;ﬂ
2. Let P = (8 IS ). Set s =p =r Blll- 3143- . :;;
1,2 2'71,2 1,3 1,2 8 ) v
1,1 °1,2

3. Continue, until Pl,t = éxatlsl,t) where 81 ¢ " P1,e1™ ;

P Py .o P P
polal Chesl g, oL Lt !
1,1 1,t-1 ’ 1,2 1,t Tff
]
1
1
v —f
:?" P e e e e e e e e e e e e ) :’1
;‘.'-B.-F ..... “._'“ ....... .. ’;L~ e e, ~._‘ y ‘.:—L‘ L “___‘L_;‘_ LT - ~ ~.';
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P1,1
2
Note that s, ) =P, t/(s ).
1,1
p P P
9 ? 2’1 1’3 sl,t

or equivalently, s, , = P, 1/(2113).
] b ] 1 2

5. Continue. I L
u n general, set s 4 =P -1 (:———41’ 2<1i<t
d =
and set 8,1 = Paot,e ( ) We then let P_ 1 O(Gilsn’i),
and define sn,i+1(sn+1,1 if 1 = t), etc.

Suppose now that the 61 are actually linear sets so that equality

holds in (1.5). Noting that for any P € Gi

@1 1els, ) = Zp0 smlp)/s (0]
4 k ’

'EP“)“h“”“mbﬁ”@mhﬁmﬁmhﬁ””]

(k)
(2.2) = Z.p(k)ln—n—(%)- +2p(k)£n—n—1-Li(T),
n i-1 n-l,i

-

we observe that the last term must be equal to
(k)
2 Po-1, 1(k) £n ( )

and hence free of p. Thus the p € 81 which minimzes (2.1),

is also the one which minimizes the first part of (2.2), i.e., the
I-projection of Pn,i-l
reduces to the cyclic, iterative procedure given by Csiszar when the 81

onto 81. It easily follows that our procedure

are closed linear sets.

..........
...............
..................................




CEMCPMOIMCIMCIMA IR SagN i o e iy L i i S I A A S e g IS A, Apabs Rg i etk it bl e o7

For a simple example to show that Csiszar's procedure does not work

for general convex sets, consider the following:
P11> P 22
11’ P12
8]_ {(Pz:lt Pz)’ pll 2 p12’ P21 & P22’ pij 20, %% pij = 1}’

s =dft11° P12 32
, - Pprs Pyy)’ Pyy ® Pyyr Pyp = Ppps Pyy 2 0, 1§'pij = 1y,

. and
1 3
- 16 16
S R\ s )
- 16 16
- 21 11
Q; Csiszar's procedure yields 32 32 , Wwhereas 4 4 is the correct
% 9 1 11
. 32 32 4 4
solution.

Everything hinges on the following theorem.

t
Theorem 2.1. Assume & = ? 61, where the 61 are closed, convex sets of
PD's and R # 0 1s a nonnegative vector such that there exists a T € 4
where I(THR) < ®, If there exists a convergent subsequence P, 4P

j’

for some i such that

Pn i(k)
j’
(2.3) limjinf E ("nj,i(“) - p(k)) ln(’s—"_iﬁ;)‘) 20

nj,

for every 1, then P,y P 8 n*> and P= @(8|R) where
»

p and s are defined as in the proposed algorithm. o
n,i n,1 o

=
Proof. Recall that pn’i = 9681|%"1) where —
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o

10
e =y Pn,l Pn,i-1 Pp-1,1+1 Pa-1,t
n,1 5a n i-1 5%- -1,1i+1 sn—l,t
-1
(2.4) /(“ ) =1
n -1,t n-1,1
- n-1,1
pn’i_ll(v;——!—) <1<,
n-1,

Thus
(Pn’iusn,i) - I(Pn_l’ius _1,1)
*n,1 Pa-1,1
=Xp ;m(—=) -Tp 2n( )
n,1i 8 n-1,1
n,i . n-l i
Py p .
(2.5 =L, w4y by _pp o ancEL,
o1 n,i-1 n-1,1 =5, n-1,1
=3 Phg B p ——) + Z(p - P, ) 2n(———’~)
n’i-l n"l i

> I(Pn’iUPn’i_l) 1f 2 <1 < t, and similarly if 1 =1,

o F



11
since (by 1.4) the last term must be nonnegative because Pn 1 € 81.
1 ]
Noting that I(Pn,iupn,i-l) 20 since P, and P, , are PD's,
we have that I(Pn i“sn 1) is nondecreasing in n for each 1. Let
? 9
us now show that these sequences are bounded above.
t
For V€ NG,
i
1
Ivje, ) = I vin(z—)
u,i pn,:l
P P P__ P
=Y vin v -F vin z[ n,l .“sn,i 8" LTS 5.2 N snlt ]
®n,1 n,i ®n-1,1+1 n,t
t Pa
(2.6) =L v¢qnv-L vtnr - ¥ [Zvln—’-i-I(P IIs. 1
j=1 sa,j a,j" a,j
- t " n, j i 1 "-:,.~
& - T I(P S ,) vhere a = ]
- =1 i ad a-1, § > 1. 53
- e
= < I(V{R) - 1 S et
i V||R) j§1 (Pa,jll a,j) -
by (1.4) and the fact that V belongs to every 61. Thus, choosing '-"5-:;
. ' 4
V such that I(VJ|R) < ®», we have a uniform upper bound on I(Pn,iusn,i)' s
Zi‘: 1
S
=l
i* '“‘1
=
]
et I e e AU CE DI Yo 3 JEIS

g vz T T - - TvEv T T
e s s i e et DA I fren e Sl A e e Jive Wi pin YA R AL N N A S LSl
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Hence the 1lim I(P

L n,iusn,i) exists finite for every 1, and by (2.5)

e BB bl e

2.7 I(Pn,iﬂ‘l’n’i_l) +0 as n-+e for 2<ic<t.
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(Similarly I(Pn,lupn-l,t) +0 as n =)

-
eandin,

~

Note that (1.2) and (2.7) imply that if p, 4+ P for some 1,
r h
then pn A +p for every i. Thus p € rlai since pn 1 € 61 and

1 3

t
Using (1.5) and (2.3), for any V € 61.

1

the 61 are closed.

' Pn, 1
0< L Uninf T(p, , - PMn(cL-) X
1 3 x Ty n,,1 <

n,,1
j'

L1
1im inf T T (v-p) ln(;—j—‘-)

i ik ny,1

ia

Pn A
= 1lim inf L (v-p) &n r H(—s—J - /r e

h ] k i l‘lj91

pn ot
lim ¥ (v-p) tn(—L—) S
j k r . 1

T (vp) ).
k

Thus P=@(8|R) by (1.5). Setting V = P in (2.6) and using (2.3), it

R
e =
Sl
—m—
L
Ve
..' a
et |
e

-

.

follows that for the subsequence {nj},

[——
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z I

S ) > I(P|R).
I 1, s, 10

fAowever, by the wmonotonicity in n of I(Pn 1]]Sn {)» Wwe have that
9’ 14

t
1§1 e, :l.“sn, g~ ICE(R.

Thus I(P“Pn,t) + 0, so that by (1.2) and (2.5), L +p as n+ o

for all 1.

We remark that it would take rather surprising behavior of the

;; Py for condition (2.3) to not hold, and we strongly conjecture that
. [

Eé this condition is always true. As we note in the following corollary,
if the P, 1.-fvP(.SIR), we must have sup l s j.(lc) + o, and we have
»

n
. n,i k
2 been unable to construct examples where this happens. We point out

o Vi

that when one uses the algorithm, they can put in a step to check the

i 2 TREREARATA
. Lo,
et e
. R
: PR R

value of sup ) 8 (k). If the algorithm is not going to converge

n,i k n,1
correctly, then this value must become excessively large. Otherwise,

the algorithm must converge to the correct solution.

Corollary 2.1. If the algorithm should not converge correctly, then

sup L 8 1(k) +® as n-»> o,
n,dik ™

Proof. Suppose s 1(k) is uniformly bounded above, and P, (P
14 ’
is a convergent subsequence (which must exist since 0 2P, 1(k) < 1).
’

If there exists 0 < m < s 1(k) for all nj,k, then (2.3) follows -
- 1

by standard continuity properties. If not, there exists at least one k

such that s 1(k) takes on arbitrarily small values. Then either

"

»
o
5‘

R

P A AR A AR A A A A A, A A A AT

Tt AT et At Lt e T e
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E':‘
P, 1(k) + 0 for all such k (which cause no problems), or there exists
j) : .:._
a k such that p (k) + p(k) > 0, while s (k) takes on arb- i
n oi n 91 i
trarily small values. This contradicts the uniform upper bound of
o, dla,e &
We recommend that when one uses the algorithm, they sheould compute the N
t e
average value over an entire cycle (% z P 1) rather than a single RO
. i=1 ™ o
i projection pu { to estimate the I-projection. Convergence is still ___
- ]
Fj' guaranteed, and this value is much more stable and seems to converge much "&
more quickly to the correct solution. ::.'.:'f.:
3. An Example i
To illustrate our algorithm, we consider nxn arrays of probabilities, ,.__
n n ——
say (Pk ) Pk >0, k,j = 1,...,0, 2 Z P = 1, We denote the ‘:
J 3= plksl o
n n
corresponding marginal PD's by p, = Lp,, and p.,L =L p,., k,j = gons
ke j=l kj °J k=1 kj N ]
1,...,n0. '-"'
We now consider the problem of finding the I-projection of a
fixed array (t'k j) subject to the marginal PD's being stochastically
ordered, 1i.e. """
i 1 .
Lp,>22p,, forall i.
Q=1 =1 o
(Kullback (1971) has given an iterative procedure for I-projections where
equality is forced to hold for all 1, also known as marginal homogeneity. ::.:’
Equivalently, we want to find the I-projection of (rk j) onto :
e 5 - i} i}
(3.1) = (1 vhere = {(p,,)s Py, 2 P, 1.
1 1 1 k3 il el 20 el ga) oM e
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E" Note that the 61 are closed, convex sets of PD's which are not

%)

E:' linear sets. I-projectiomns of (vk j) onto the é’i can be found by forc-
~ L4

ing equality in the constraint if the (vk j) violate the constraint. (See
1 ]

Theorem 2.11 of Barlow et al. (1972) which can be modified to apply to

arbitrary, convex functions.)

To express P(01|V), we let

A

y = {(,m); 1 <2 <4, 441 <m <n},

(e,m); 1 <m<i, i+l <2 <n},

Q
[}

{(z,m); ¢,m=1,...,1} U {(2,m); 2,m = i+1,...,n}

-~ - k
and v = &y By )%

i i
1f (vkj) satisfies the constraint of 61 (E vz’mz L v!.,m)’ then
B
1 i
s nn
P(4, v)k,j = vk,j/ }l:fv."‘“ for all k,j.
If (v,,) does not satisfy the constraint of 6, (Lv. < Zv ) then
1j i A l,m B me
i i
v
r § !.,m ;5
i iy -1
vk,j ————z - [2 v+ Evz’ 17, (k,3) €Ai,
A b 1
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The key point is that finding the I-projection onto éi is
quite easy (and easily programmed), while finding the I-projection onto
é 'nF: 61 is very difiicult. However our algorithm enables one to find
the latter I-projection using only the ability to handle the I-projections

onto the individual é&.

;E To illustrate our example with some numbers, we consider some rather
2: famous data from Stuart (1953) concerning grades of unaided distance vision
ii for left and right eyes. If one wished to estimate the probabilities of

: falling into the various categories, subject to the provision that right

eye vision is at least as good as left eye vision, one might find the

I-projection of the data in Table 1 onto the & given in (3.1). Using
this algorithm, we have essentially obtained convergence to the true
I-projection by 3 cycles. These values are listed in Table 2 (with the
unrestricted MLE's given in parentheses).

This estimate might prove useful for constructing a likelihood ratio
type test for testing whether right eye vision is better than left eye
vision. This data is treated by Plackett (198l) who uses it for tests
involving marginal homogeneity and quasi-symmetry. It also appears in

Kendall (1974).
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Table 1
Unaided Distance Vision
(From Kendall (1974)). S
LEFT EYE N
Highest Second Third Lowest Totals A
grade grade grade grade L
Highest grade| 821 112 85 35 1053 S
& T
B second grade 116 494 145 27 782 S
ELThird grade 72 151 583 87 893 s
Lowest grade 43 34 106 331 514
Totals 1052 791 919 480 3242
Table 2
I-Projection of Data in Table 1 -
(Values in parentheses are Table 1 values normed s
sum to unity.) o
LEFT EYE g
Highest Second Third Lowest Totals ——
Grade Grade Grade Grade T
,2534 .0344 .0262 .0120 .3260 =
Highest grade|  ;s32) (.0345) (.0262) | (.0108) || (.3247) 2
o
Second grade | .0358 <1525 L0447 .0092 .2422 S
E (.0358) (.1524) (.0447) (.0083) (.2412) ]
Third grade | .0222 .0466 .1799 .0298 .2785 -
5 (.0222) (.0466) (.1798) (.0268) (.2754) ;fﬁ
- .0120 .0095 .0295 .1022 .1532 S
h o) Lowest grade | )33 (.0105) (.0327) (.1021) (.1586) —
" s
» Totals .3234 .2430 .2803 .1532 .9999 o
;: (.3245) (.2440) (.2834) (.1480) (.9999) A
- o
!- .
.. e
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